

pseud a bidirectionnal RPC library ready for the hostile web

Initialize an RPC peer playing as a server

The server
from pseud import Server

server = Server('service')
server.bind('tcp://127.0.0.1:5555')

@server.register_rpc
def hello(name):
 return 'Hello {0}'.format(name)

await server.start() # this would block within its own io_loop

Prepare a client

from pseud import Client

client = Client('service')
client.connect('tcp://127.0.0.1:5555')

then make a remote procedure call (rpc)

Assume we are inside a coroutine
async with client:
 response = await client.hello('Charly')
 assert response == 'Hello Charly'

Narrative Documentation

	Introduction

	Remote Calls
	Registration

	Authentication

	Heartbeating

	Job Routing
	Predicates

	Protocol v1
	ENVELOPE

	PSEUD MESSAGE

	MESSAGE TYPES

	COMMUNICATION

	pseud.interfaces
	RPC-Related Interfaces

	Plugins-Related Interfaces

	Constants

	Exceptions

	Changelog history
	1.0.1dev - Not yet released

	1.0.0 - 2018/04/17

	1.0.0-a1 - 2017/04/09

	Breaking Changes

	0.0.5 - 2014/08/27

	0.0.4 - 2014/03/25

	0.0.3 - 2014/02/24

	0.0.2 - 2014/02/13

	0.0.1 - 2014/01/27

API Documentation

	pseud.auth

	pseud.heartbeat

	pseud.predicate

	pseud.utils

Indices and tables

	Glossary

	Index

	Module Index

	Search Page

Introduction

There are already plenty RPC libraries for Python. Many of them mature, tested and with an
active community behind. So why build yet another one?

We discovered that most of those libraries make the assumption that they’re running
within a trusted network; that a client/server architecture means clients connect and consume
resources exposed by the server and not vice versa.

RESTful APIs are great to consume them in the browser or in a simple client/server architecture.
Once you add more distributed components and services to the game, running on potentially hostile
networks, the common HTTP/RESTful design pattern becomes less practical. With pseud we can get
over these limitations by providing secure, fault-tolerant, RPC style communication built for
fast and easy machine to machine communication.

pseud is based on the amazing ØMQ [http://zeromq.org/] library and pyzmq [https://github.com/zeromq/pyzmq] .
It provides a convenient and pythonic API to hide some of the library’s complexity and provides
boilerplate code to save your time and headaches.

Also thanks to the ZCA [http://docs.zope.org/zope.component/], pseud comes with a pluggable architecture that allows
easy integration within your existing stack. It is usable within any web application (Django, Flask, aiohttp, sanic, Pyramid, Tornado, …).

Remote Calls

To perform remote procedure calls you just need to connect two peers, and
then, on your local peer instance, call a registered function with the right
parameters. You will then receive the return value of the remotely executed
function.

server.py
import string

import pseud
from pseud.utils import register_rpc

server = pseud.Server('remote')
server.bind('tcp://127.0.0.1:5555')

register locally for this server only
server.register_rpc(string.lower)
register globally for all rpc instances
register_rpc(string.upper)

await server.start()

client.py
import pseud

client = pseud.Client('remote')
client.connect('tcp://127.0.0.1:5555')

res1 = await client.lower('ABC')
res2 = await client.upper('def')

assert res1 == 'abc'
assert res2 == 'DEF'

Registration

Registration is a necessary step to control what callable you want to expose
for remote peers.

Global

The register_rpc decorator from pseud.utils module must be used to
register a callable for all workers of the current process.

from pseud.utils import regsiter_rpc

@register_rpc
def call_me():
 return 'Done'

Local

An RPC instance exposes its own register_rpc function, which is used to
register a callable only for that same RPC instance.

def call_me():
 return 'Done'

server.register_rpc(call_me)

You can also instantiate a registry and give it to
pseud.utils.register_rpc, and pass it as an init parameter in the RPC.
It is more convenient to use register_rpc as a decorator

import pseud
from pseud.utils import register_rpc, create_local_registry

registry = create_local_registry('worker')

@register_rpc(registry=registry)
def call_me():
 return 'Done'

server = pseud.Server('worker', registry=registry)

Name it !

You can also decide to provide your own name (dotted name) to the callable

from pseud.utils import regsiter_rpc

@register_rpc('this.is.a.name')
def call_me():
 return 'Done'

client.this.is.a.name().get() == 'Done'

Server wants to make the client do work

In order to let the server send jobs to its connected clients, the caller
should know the identity of the specified client beforehand.
By default all clients are anonymous for the server. This is why it
is necessary to rely on your own security_plugin to perform
the authentication.

The most simple authentication that you can use is plain for the client,
by passing user_id and password arguments to the constructor.
Then on the server side trusted_peer will just trust that given user_id
will identify the peer, and ignore the password.

Given a client whose identity is 'client1', with a registered function named
addition, the following statement may be used to send work from the server
to the client:

server.py
server = Server('service', security_plugin='trusted_peer')
server.bind('tcp://127.0.0.1:5555')
await server.start()

client.py
client = Client('service',
 security_plugin='plain',
 user_id='client1',
 password='')

client.connect('tcp://127.0.0.1:5555')

@client.register_rpc
def addition(a, b):
 return a + b

await client.hello('Me') # perform a first call to register itself

Note

The client needs to perform at least one call to the server
to register itself. Otherwise the server won’t know a client is connected
to it. On real condition the heartbeat backend will take care of it.
So you do not have to worry about it.

server.py

result = await server.send_to('client1').addition(2, 4)
assert result == 6

Note

the client1 string is the user_id provided by the client.

Authentication

pseud allows you to build your own Authentication Backend.
Your implementation must conform to its
Interface defined in
pseud.interfaces.IAuthenticationBackend

Also all your plugin must adapts [http://zopecomponent.readthedocs.io/en/latest/api/adapter.html#zope.component.adapts] pseud.interfaces.IClient or
pseud.interfaces.IServer and being registered thanks to
pseud.utils.register_auth_backend() decorator.

Implementing your own authentication backend can be used to support
CURVE encryption. And also for more advanced use-case with external ID provider.
That is your favorite web-framework or simple PAM, you name it.

You can start with the following snippet

@register_auth_backend
@zope.interface.implementer(IAuthenticationBackend)
@zope.component.adapter(IClient)
class MyAuthenticationBackend(object):
 """
 This implementation implements
 IAuthenticationBackend and adapts IClient
 """
 name = 'my_auth_backend'

 def __init__(self, rpc):
 self.rpc = rpc

 def stop(self):
 pass

 def configure(self):
 pass

 def handle_hello(self, *args):
 pass

 def handle_authenticated(self, message):
 pass

 def is_authenticated(self, user_id):
 return True

 def save_last_work(self, message):
 pass

 def get_predicate_arguments(self, user_id):
 return {}

In this example the name ‘my_auth_backend’ will be used when instanciating
your RPC endpoint.

client = pseud.Client('remote',
 security_plugin='my_auth_backend')

Read Protocol v1 for more explanation. Also in pseud.auth you will find
examples that are used in tests.

Heartbeating

pseud allows you to build your own Heartbeat Backend.
Your implementation must conform to its
Interface defined in
pseud.interfaces.IHeartbeatBackend

Also all your plugin must adapts [http://zopecomponent.readthedocs.io/en/latest/api/adapter.html#zope.component.adapts] pseud.interfaces.IClient or
pseud.interfaces.IServer and being registered thanks to
pseud.utils.register_heartbeat_backend() decorator.

Heartbeat backends aim to define your the policy you need regarding exclusion
of disconnected peer, e.g.. after 3 heartbeat missed, you can decide to exclude
peer from list of known connected peers.

Also, very important, thanks to heartbeat backends you can maintain an accurate
list of currently connected clients and their ids. It is up to you to decide to store this
list in memory (simple dict), or to use redis if you think the number of peers
will be huge.

You can start with the following snippet

@register_heartbeat_backend
@zope.interface.implementer(IHeartbeatBackend)
@zope.component.adapter(IClient)
class MyHeartbeatBackend(object):
 name = 'my_heartbeat_backend'

 def __init__(self, rpc):
 self.rpc = rpc

 def handle_heartbeat(self, user_id, routing_id):
 pass

 async def handle_timeout(self, user_id, routing_id):
 pass

 def configure(self):
 pass

 def stop(self):
 pass

In this example the name ‘my_heartbeat_backend’ will be used when
instanciating your RPC endpoint.

client = pseud.Client('remote',
 heartbeat_plugin='my_heartbeat_backend')

Read Protocol v1 for more explanation. Also in pseud.heartbeat
you will find examples that are used in tests.

Job Routing

Predicates

During registration, user can associate a domain to the callable.
Each domain will be linked to a specific Predicate with its own Policy.
By default all rpc-callable are registered within default domain, that allow
all callable to be called.
In case of rejection, pseud.interfaces.ServiceNotFoundError exception
will be raised.

You can of course define your own predicate and register some callable under
restricted domain for instance.

@register_rpc(name='try_to_call_me')
def callme(*args, **kw):
 return 'small power'

@register_rpc(name='try_to_call_me',
 domain='restricted')
def callme_admin(*args, **kw):
 return 'great power'

In this example we have 2 callable registered with same name but with
different domain.
Assuming we a have a Authentication Backend that is able to return a user
instance and from this user instance we can know if he is admin.
then we can assume the following behaviour

anonymous user

await client.try_to_callme() == 'small power'

Then with user with admin rights

user admin

await client.try_to_callme() == 'great power'

From this behaviour we can perform routing based on user permissions.

Protocol v1

pseud uses to transport its messages ØMQ with ROUTER sockets.
the structure of every frames follow this specification.

ENVELOPE + PSEUD MESSAGE

ENVELOPE

The envelope belongs to ømq typology to route messages to right recipient.
the are separated from pseud message with empty delimiter ''.
Basically the envelope will be

['peer_identity', '']

PSEUD MESSAGE

FRAME 0: VERSION of current protocol

utf-8 string 'v1'

FRAME 1: message uuid

bytes uuid4 or empty string for hearbeat messages

FRAME 2: message type

byte

FRAME 3: body

WORK, OK, ERROR and HELLO expect msgpack.
AUTHENTICATED, UNAUTHORIZED and HEARTBEAT expect utf-8 strings.

MESSAGE TYPES

WORK

'\x03'

	the body content is a tuple of 3 items

	
	dotted name of the rpc-callable

	tuple of positional arguments

	dict of keyword arguments

OK

'\x01'

ERROR

'\x10'

	the body content is a tuple of 3 items

	
	string of Exception class name e.g. ‘AttributeError’

	message of the exception

	Remote traceback

UNAUTHORIZED

'\x11'

HELLO

'\x02'

	the body content is a tuple of 2 items

	
	login

	password

AUTHENTICATED

'\x04'

HEARTBEAT

'\x06'

COMMUNICATION

	client sends work to server and receive successful answer.

	client

	->

	<-

	server

	
	WORK

	
	

	
	
	OK

	

	client sends work to server and receive an error.

	client

	->

	<-

	server

	
	WORK

	
	

	
	
	ERROR

	

	server sends work to client and receive successful answer.

	client

	->

	<-

	server

	
	
	WORK

	

	
	OK

	
	

	client sends an heartbeat

	client

	->

	<-

	server

	
	HEARTBEAT

	
	

	server sends an heartbeat

	client

	->

	<-

	server

	
	
	HEARTBEAT

	

	client send a job and server requires authentication

	client

	->

	<-

	server

	
	WORK

	
	

	
	
	UNAUTHORIZED

	

	
	HELLO

	
	

	
	
	AUTHENTICATED

	

	
	WORK

	
	

	
	
	OK

	

	client send a job and server requires authentication but fails

	client

	->

	<-

	server

	
	WORK

	
	

	
	
	UNAUTHORIZED

	

	
	HELLO

	
	

	
	
	UNAUTHORIZED

	

pseud.interfaces

RPC-Related Interfaces

Plugins-Related Interfaces

Constants

WORK

OK

ERROR

HELLO

UNAUTHORIZED

AUTHENTICATED

HEARTBEAT

Exceptions

Changelog history

1.0.1dev - Not yet released

1.0.0 - 2018/04/17

	enable PROBING

	Switch to pipenv

	maintenance of dependencies + tests cleanup

1.0.0-a1 - 2017/04/09

Features

	Add reliable authentication (thx to zmq_msg_gets())
We can now reliably know who is sending messages, this feature is required
with an authentication backend that use the zap handler.
Just PLAIN, and CURVE can do the job.

	Add support for async context manager interface:

	rely on PROBE_ROUTER socket option to let clients register themselves (instead of relying on heartbeat backend).

async with server:
 # do something
 ...
socket is closed

Breaking Changes

	Only python3.6+ is supported

	Only asyncio is supported (tornado and gevent are dropped)

Note

This break backward compatibility.
Interfaces are renewed and internal API is modified.
It is not longer possible to hardcode socket’s routing_id for clients.

Note

pseud requires at least pyzmq 14.4.0 + libzmq-4.1.0 with zmq_msg_gets()

Bug Fixes

	RPCCallable from local registry receive better priority if two registered RPCs share the same name.

0.0.5 - 2014/08/27

	Add python3.4 support for Tornado backend

0.0.4 - 2014/03/25

0.0.3 - 2014/02/24

	Add support of Aysnc RPC callables for Tornado

	Add support of datetime (tz aware) serializations by msgpack

0.0.2 - 2014/02/13

0.0.1 - 2014/01/27

	Scaffolding of the lib

pseud.auth

pseud.heartbeat

pseud.predicate

pseud.utils

Glossary

	AUTHENTICATED

	Status member of pseud protocol

	domain

	Apply to predicates for job routing

	UNAUTHORIZED

	Status member of pseud protocol

	VERSION

	Versions of protocol. Useful to keep
backward compatibility in case of evolution
of the protocol.

Index

 A
 | D
 | U
 | V

A

 	
 	AUTHENTICATED

D

 	
 	domain

U

 	
 	UNAUTHORIZED

V

 	
 	VERSION

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pseud a bidirectionnal RPC library ready for the hostile web

 		
 Introduction

 		
 Remote Calls

 		
 Registration

 		
 Global

 		
 Local

 		
 Name it !

 		
 Server wants to make the client do work

 		
 Authentication

 		
 Heartbeating

 		
 Job Routing

 		
 Predicates

 		
 Protocol v1

 		
 ENVELOPE

 		
 PSEUD MESSAGE

 		
 MESSAGE TYPES

 		
 WORK

 		
 OK

 		
 ERROR

 		
 UNAUTHORIZED

 		
 HELLO

 		
 AUTHENTICATED

 		
 HEARTBEAT

 		
 COMMUNICATION

 		
 pseud.interfaces

 		
 RPC-Related Interfaces

 		
 Plugins-Related Interfaces

 		
 Constants

 		
 Exceptions

 		
 Changelog history

 		
 1.0.1dev - Not yet released

 		
 1.0.0 - 2018/04/17

 		
 1.0.0-a1 - 2017/04/09

 		
 Features

 		
 Breaking Changes

 		
 Bug Fixes

 		
 0.0.5 - 2014/08/27

 		
 0.0.4 - 2014/03/25

 		
 0.0.3 - 2014/02/24

 		
 0.0.2 - 2014/02/13

 		
 0.0.1 - 2014/01/27

 		
 pseud.auth

 		
 pseud.heartbeat

 		
 pseud.predicate

 		
 pseud.utils

_static/up-pressed.png

_static/up.png

_static/plus.png

